Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» ФГУП «ВНИИМ им Д.И. Менделеева»

УТВЕРЖДАЮ

Государственная система обеспечения единства измерений Датчики ветра магнитоэлектрические ДВМ-6410 Методика поверки МП 2550-0317-2018

> Руководитель отдела скорости и расхода воздушного и водного потоков ФГУП «ВНИИМ им. Д.И. Менделеева»

> > _К.В. Попов

Руководитель отдела метеорологических систем ФГУП «ВНИИМ им. Д.И. Менделеева»

В.П. Ковальков

Санкт-Петербург 2018

1 Область применения

Настоящая методика распространяется на датчики ветра магнитоэлектрические ДВМ-6410 (далее датчики) предназначены для измерений скорости и направления ветра (воздушного потока) в приземных слоях атмосферы, обработки и передачи данных потребителю.

Интервал между поверками – два года.

2 Операции поверки

При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1- Операции поверки

Наименование операции	Номер пункта
1 Внешний осмотр	6.2
2 Опробование, идентификация ПО	6.3
3 Определение метрологических характеристик	6.4
4 Оформление результатов поверки	7

В случае несоответствия датчика требованиям какой-либо из операций поверки, датчик считается непригодным к эксплуатации, и дальнейшая поверка прекращается.

3 Средства поверки и вспомогательное оборудование

- 3.1 При проведении поверки применяются нижеперечисленные средства поверки и вспомогательное оборудование:
- аэродинамическая измерительная установка рабочий эталон 1 разряда по ГОСТ 8.886-2015 «ГСИ. Государственная поверочная схема для средств измерений скорости воздушного потока» с диапазоном воспроизведений скорости воздушного потока от 0,5 до 60 м/с;
- лимб по ГОСТ 8.016-81 «ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений плоского угла» с диапазоном измерений от 0 до 360 градусов с погрешностью не более ± 1 градус;
- комплекс поверочный портативный КПП-4, диапазон воспроизведения и измерения частоты вращения вала от 20 до 15000 об/мин, абсолютная погрешность $\pm 0,003~\omega$ об/мин, где ω значение частоты вращения вала; диапазон измерения угла поворота от 0 до 360°, абсолютная погрешность ± 1 °;
- термогигрометр ИВА-6Н-Д, диапазон измерений температуры воздуха от 0 до 60°С, погрешность измерений ± 0.3 °С; диапазон измерений относительной влажности воздуха от 0 до 98 %, погрешность измерений ± 2 % в диапазоне от 0 до 90 % включ., ± 3 % в диапазоне от 90 до 98 %; диапазон измерений атмосферного давления от 300 до 1100 гПа, погрешность измерений ± 2.5 гПа в диапазоне от 700 до 1100 гПа;
 - 3.2 Средства поверки должны иметь действующие свидетельства о поверке.
- 3.3 Примечание: допускается применять аналогичные средства поверки, обеспечивающие запас точности не менее 1:3.

4 Требования безопасности и требования к квалификации поверителя

4.1 При поверке необходимо соблюдать требования, определяемые:

- межотраслевыми правилами по охране труда (правила безопасности) при эксплуатации электроустановок ПОТ Р М-016-2001. РД 153-34.0-03.150-00 (с изменениями 2003г.);
 - правилами технической эксплуатации электроустановок потребителей;
- требованиями безопасности при эксплуатации установок, применяемых средств поверки и поверяемого с преобразователя, приведенными в эксплуатационной документации.
- 4.2 При поверке необходимо соблюдать требования ГОСТ 12.3.019-80 «Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности».
- 4.3 К поверке допускаются лица, прошедшие специальную подготовку и имеющие удостоверение на право проведения поверки и эксплуатации поверочной установки, имеющие квалификационную группу по технике безопасности не ниже ІІІ согласно «Правила техники безопасности при эксплуатации электроустановок потребителей», изучившие руководство по эксплуатации (РЭ) и правила пользования средствами поверки. Поверитель должен пройти инструктаж по технике безопасности и противопожарной безопасности, в том числе и на рабочем месте.

5 Условия поверки

При проведении поверки должны быть соблюдены следующие условия:

- -температура окружающего воздуха от 15 до 25 °C;
- -относительная влажность от 30 до 90 %;
- -атмосферное давление от 84 до 106,7 кПа;
- -поверочная среда воздух

6 Проведение поверки

6.1 Подготовка к поверке

Перед проведением поверки датчика проверяют комплектность технической документации.

6.2 Внешний осмотр

При внешнем осмотре устанавливают:

- соответствие комплектности датчика технической документации;
- отсутствие механических повреждений и дефектов, влияющих на работоспособность датчика, следов вскрытия корпуса; поверяемый датчик не должен иметь механических повреждений.

6.3 Опробование

Подготавливают датчик к работе, подключают к источнику питания и персональному компьютеру в соответствии с Руководством по эксплуатации ЛАНИ.416136.002 РЭ (далее - РЭ). Проверяют функционирование согласно указаниям, приведенным в 2.3.3-2.3.5 РЭ. Включить источник питания, предварительно установив на его выходе напряжение постоянного тока 12 В. Запустить программу АСК.ЕХЕ «Обслуживание датчика ветра», как показано на рисунке 1.

0/04/2017							13:36:3 13:36:3
Параметры	> <	Среднее	Текущее	Макс.10м	Макс. Зч	Макс./Ин	тервал,с
Скорость, м/с Направление, град.	3.0 3.0	0.40 76.2	1.71 81.1	2.59 72.5	2.59 72.5	2.59 72.5	45.000 0.0000

Рисунок 1

На дисплее компьютера высветятся значения скорости и направления ветра. Если вышеуказанные функции выполняются, датчик допускается к поверке.

Отображение идентификационных данных встроенного ПО проводится с помощью программы Ack.exe из комплекта поставки. При нажатии на клавиши CTRL+F1 данные выводятся в последней строке. Идентификационные данные ПО датчика приведены в Таблице 2.

Таблица 2

Идентификационные данные (признаки)	Значения
Идентификационное наименование ПО	DVM
Номер версии (идентификационный номер) ПО	8
Цифровой идентификатор ПО (CRC32)	A1EE18EA

6.4 Определение метрологических характеристик датчика

Определение метрологических характеристик датчика при первичной или периодической поверке проводят в соответствии с п.6.4.1, периодическую поверку на месте эксплуатации проводят в соответствии с п.6.4.2.

- 6.4.1 При первичной (или периодической) поверке определение погрешности проводят путем сравнения значений скорости, измеренной датчиком, с эталонным значением скорости воздушного потока в эталонной установке следующим образом:
- Последовательно задают в эталонной установке 5 значений скорости воздушного потока от 0,6 до 60 м/с, равномерно распределенных в диапазоне измерений;

После установки скорости воздушного потока

- Определяют скорость воздушного потока по датчику.
- Определяют абсолютную погрешность датчика Δ_v при каждой скорости воздушного потока в эталонной установке, м/с, по формуле 1:

$$\Delta_{\rm v} = {\rm V_{\rm R}} - {\rm V_{\rm S}}. \tag{1}$$

где V_{2} – эталонная скорость воздушного потока, м/с

 $V_{\scriptscriptstyle B}$ – скорость воздушного потока по показаниям датчика, м/с

Для определения погрешности при измерении направления воздушного потока, датчик без флюгера и вертушки устанавливают на координатный стол таким образом, чтобы ось флюгера была закреплена в центре оси вращения согласно 2.3.5 РЭ. Штангу датчика совмещают с нулем координатного стола и закрепляют в этом положении. При вращении лимба координатного стола вращается ось флюгера, а штанга датчика неподвижна. В программе обслуживания ветра с помощью клавиш CTRL+END переключают измерительный контроллер в режим измерения угла направления без вращения вертушки.

С помощью координатного стола датчик ориентируют под углами 0; 90; 150; 180; 210; 270, 300, 359 градус. При каждом значении углового положения снимают отсчёт текущих

значений направления воздушного потока.

Абсолютную погрешность измерений направлений Δ_{ϕ} ветра определяют как разность между значениями направления воздушного потока по датчику $\phi_{\text{в}}$ и эталонными значениями $\phi_{\text{э}}$ углового положения датчика, заданного при помощи координатного стола по формуле 2:

$$\Delta \varphi = \varphi B - \varphi \vartheta (\Gamma p \alpha \beta y c) \tag{2}$$

6.4.2 Периодическая поверка на месте эксплуатации выполняется в следующем порядке:

Для определения погрешности при измерении скорости воздушного потока присоединяют раскручивающие устройство (КПП-4) к чувствительному элементу поверяемого датчика скорости воздушного потока. Устанавливают на пульте управления КПП-4 значения частоты вращения оси раскручивающего устройства из КПП-4 в пяти точках, равномерно распределенных по диапазону измерений (соответствие частоты вращения и эталонной скорости воздушного потока рассчитывается по переводной функции, указанной в ЭД). На каждой имитируемой скорости воздушного потока фиксируют значения измеренные $V_{\text{изм}}$ и значения эталонные $V_{\text{эт}}$, снимаемые с пульта КПП-4. Вычисляют абсолютную погрешность ΔV , м/с, по формуле 3:

$$\Delta V = V_{\text{H3M}} - V_{\text{3T}} \tag{3}$$

Для определения погрешности при измерении направления воздушного потока устанавливают датчик на лимб из комплекта КПП-4 таким образом, чтобы показания соответствовали (0 ± 1) градус. Задают лимбом значения направления воздушного потока в пяти точках, равномерно распределённых по всему диапазону измерений. На каждом заданном значении фиксируют значения измеренные $\phi_{\rm измі}$ и значения эталонные $\phi_{\rm этi}$, заданные лимбом. Вычисляют абсолютную погрешность измерений направления воздушного потока $\Delta \phi$, градус, по формуле:

$$\Delta \varphi = \varphi_{\text{M3Mi}} - \varphi_{\text{3Ti}} \tag{4}$$

Датчик считается прошедшим поверку, если абсолютная погрешность датчика не превышает пределов допускаемой абсолютной погрешности:

Таблица 3

Наименование характеристики	Значение
Диапазон измерений скорости воздушного потока, м/с	от 0,6 до 60
Диапазон измерений направления воздушного потока, °	от 0 до 360
Пределы допускаемой абсолютной погрешности измерений	
скорости ветра V в диапазоне скорости, м/с	
- в диапазоне скорости от 0,6 до 5 м/с включительно	±0,5
- в диапазоне скорости свыше 5 до 60 м/с	±(0,25+0,05V)
Пределы допускаемой абсолютной погрешности измерений направления воздушного потока, градус	±5,0

Датчик, не прошедший поверку, к дальнейшей работе не допускается.

7 Оформление результатов поверки

Положительные результаты поверки оформляют записью в паспорте, заверенной поверителем и удостоверенной знаком поверки, или выдают свидетельство о поверке по форме, установленной Приказом Минпромторга РФ от 02.07.2015 № 1815 "Об утверждении порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке".

Составляют протокол поверки датчика по форме, рекомендованной в Приложении 1. При отрицательных результатах поверки датчик к эксплуатации не допускают и выдают извещение о непригодности с указанием причин, согласно действующих правил.

Знак поверки наносится на паспорт датчика или на свидетельство о поверке.

ПРОТОКОЛ

поверки датчика ветра магнитоэлектрического ДВМ-6410

Условия повер		длежит		
температура (розпуха °С		
		-		
- относительна				
- атмосферное				п ринии
методика пон леева» 28.06.20	_	2550-0317-2018	утверждена ФГУ	11 «ВНИИМ им.
	10 11			
Средства повер)ки:			
Внешний осмо	тр	соответствует/н	не соответствует	
Опробование _		соответствует/	не соответствует	
пределение аб	солютной пог	грешности изме	рений скорости возд	душного потока
	V _B	$V_{\mathfrak{I}}$	$\Delta_{\rm V} = V_{\rm B} - V_{\rm B}$	Нормируемое
			значение	
	м/с	M/C	м/с	M/C
пределение аб	солютной пог	решности изме	рений направления	воздушного потока
Nº	ϕ_B	φ 3	$\Delta_{\varphi} = \varphi_{B} - \varphi_{\vartheta}$	
	градус	градус	градус	
		 		
атиму ветра ма	гиитоэлектъм	ческий ДВМ-6	410	